## HL Paper 3

A relation S is defined on  $\mathbb R$  by aSb if and only if ab > 0.

A relation R is defined on a non-empty set A. R is symmetric and transitive but not reflexive.

| a. | Show that $S$ is |                                                                                                     |     |
|----|------------------|-----------------------------------------------------------------------------------------------------|-----|
|    | (i)              | not reflexive;                                                                                      |     |
|    | (ii)             | symmetric;                                                                                          |     |
|    | (iii)            | transitive.                                                                                         |     |
| b. | Expla            | ain why there exists an element $a\in A$ that is not related to itself.                             | [1] |
| c. | Henc             | se prove that there is at least one element of $A$ that is not related to any other element of $A.$ | [6] |

Let f:G
ightarrow H be a homomorphism between groups  $\{G,\,*\}$  and  $\{H,\,\circ\}$  with identities  $e_G$  and  $e_H$  respectively.

| a. Prove that $f(e_G)=e_H.$                     |                       | [2] |
|-------------------------------------------------|-----------------------|-----|
| b. Prove that $\operatorname{Ker}(f)$ is a subg | group of $\{G, *\}$ . | [6] |

A, B and C are three subsets of a universal set.

Consider the sets  $P = \{1, 2, 3\}, Q = \{2, 3, 4\}$  and  $R = \{1, 3, 5\}.$ 

| a.i. Represent the following set on a Venn diagram,                                                |     |  |
|----------------------------------------------------------------------------------------------------|-----|--|
| $A\Delta B$ , the symmetric difference of the sets $A$ and $B$ ;                                   |     |  |
| a.ii.Represent the following set on a Venn diagram,                                                | [1] |  |
| $A\cap (B\cup C).$                                                                                 |     |  |
| b.i.For sets $P, Q$ and $R$ , verify that $P \cup (Q \Delta R)  eq (P \cup Q) \Delta (P \cup R)$ . | [4] |  |

[2]

b.iiIn the context of the distributive law, describe what the result in part (b)(i) illustrates.

The function  $f \colon \mathbb{Z} o \mathbb{Z}$  is defined by  $f(n) = n + (-1)^n.$ 

a. Prove that  $f \circ f$  is the identity function.

b.i.Show that f is injective.

b.ii.Show that f is surjective.

[6] [2]

[1]

Let  $\{G, \circ\}$  be the group of all permutations of 1, 2, 3, 4, 5, 6 under the operation of composition of permutations.

Consider the following Venn diagram, where  $A = \{1, 2, 3, 4\}, B = \{3, 4, 5, 6\}.$ 



The binary operations  $\odot$  and \* are defined on  $\mathbb{R}^+$  by

$$a \odot b = \sqrt{ab}$$
 and  $a * b = a^2 b^2$ .

a.  $\odot$  is commutative;[2]b. \* is associative;[4]c. \* is distributive over  $\odot$ ;[4]d.  $\odot$  has an identity element.[3]

Let  $\{G, *\}$  be a finite group that contains an element a (that is not the identity element) and  $H = \{a^n | n \in \mathbb{Z}^+\}$ , where  $a^2 = a * a, a^3 = a * a * a$  etc. Show that  $\{H, *\}$  is a subgroup of  $\{G, *\}$ .

The set A contains all positive integers less than 20 that are congruent to 3 modulo 4.

The set B contains all the prime numbers less than 20.

The set *C* is defined as  $C = \{7, 9, 13, 19\}$ .

| a.i. Write down all the elements of $A$ and all the elements of $B$ .                                                                  | [2] |
|----------------------------------------------------------------------------------------------------------------------------------------|-----|
| a.ii.Determine the symmetric difference, $A\Delta B$ , of the sets $A$ and $B$ .                                                       | [2] |
| b.i.Write down all the elements of $A\cap B,\;A\cap C$ and $B\cup C.$                                                                  | [3] |
| b.iiHence by considering $A\cap (B\cup C)$ , verify that in this case the operation $\cap$ is distributive over the operation $\cup$ . | [3] |

The relation R is defined on  $\mathbb{R} \times \mathbb{R}$  such that  $(x_1, y_1)R(x_2, y_2)$  if and only if  $x_1y_1 = x_2y_2$ .

| a. | Show that <i>R</i> is an equivalence relation.                                                          | [5] |
|----|---------------------------------------------------------------------------------------------------------|-----|
| b. | Determine the equivalence class of $R$ containing the element $(1, 2)$ and illustrate this graphically. | [4] |

The group  $\{G, \times_7\}$  is defined on the set  $\{1, 2, 3, 4, 5, 6\}$  where  $\times_7$  denotes multiplication modulo 7.

- a. (i) Write down the Cayley table for  $\{G, \times_7\}$ .
  - (ii) Determine whether or not  $\{G, \times_7\}$  is cyclic.

- (iii) Find the subgroup of G of order 3, denoting it by H.
- (iv) Identify the element of order 2 in G and find its coset with respect to H.
- b. The group  $\{K, \circ\}$  is defined on the six permutations of the integers 1, 2, 3 and  $\circ$  denotes composition of permutations.
  - (i) Show that  $\{K, \circ\}$  is non-Abelian.
  - (ii) Giving a reason, state whether or not  $\{G, \times_7\}$  and  $\{K, \circ\}$  are isomorphic.

The set of all permutations of the elements 1, 2, ... 10 is denoted by H and the binary operation  $\circ$  represents the composition of permutations. The permutation  $p = (1\ 2\ 3\ 4\ 5\ 6)(7\ 8\ 9\ 10)$  generates the subgroup  $\{G, \circ\}$  of the group  $\{H, \circ\}$ .

[6]

[5]

[8]

- a. Find the order of  $\{G, \circ\}$ .[2]b. State the identity element in  $\{G, \circ\}$ .[1]c. Find[4](i)  $p \circ p$ ;<br/>(ii) the inverse of  $p \circ p$ .[4]d. (i) Find the maximum possible order of an element in  $\{H, \circ\}$ .[3]
  - (ii) Give an example of an element with this order.

The relation *R* is defined on the set  $\mathbb{N}$  such that for *a*,  $b \in \mathbb{N}$ , *aRb* if and only if  $a^3 \equiv b^3 \pmod{7}$ .

| a. | Show that <i>R</i> is an equivalence relation.          | [6] |
|----|---------------------------------------------------------|-----|
| b. | Find the equivalence class containing 0.                | [2] |
| c. | Denote the equivalence class containing $n$ by $C_n$ .  | [3] |
|    | List the first six elements of $C_1$ .                  |     |
| d. | Denote the equivalence class containing $n$ by $C_n$ .  | [3] |
|    | Prove that $C_n = C_{n+7}$ for all $n \in \mathbb{N}$ . |     |

The function f is defined by  $f:\mathbb{R}^+ imes\mathbb{R}^+ o\mathbb{R}^+ imes\mathbb{R}^+$  where  $f(x,\ y)=\left(\sqrt{xy},\ rac{x}{y}
ight)$ 

- a. Prove that f is an injection.
- b. (i) Prove that f is a surjection.
  - (ii) Hence, or otherwise, write down the inverse function  $f^{-1}$ .

The relation R =is defined on  $\mathbb{Z}^+$  such that aRb if and only if  $b^n - a^n \equiv 0 \pmod{p}$  where n, p are fixed positive integers greater than 1.

| a. Show that $R$ is an equivalence relation. | [7] |
|----------------------------------------------|-----|
|----------------------------------------------|-----|

b. Given that n = 2 and p = 7, determine the first four members of each of the four equivalence classes of R. [5]

Let c be a positive, real constant. Let G be the set  $\{x \in \mathbb{R} | -c < x < c\}$ . The binary operation \* is defined on the set G by  $x * y = \frac{x+y}{1+\frac{xy}{c^2}}$ .

| a. | Simplify $\frac{c}{2} * \frac{3c}{4}$ .                                     | [2] |
|----|-----------------------------------------------------------------------------|-----|
| b. | State the identity element for $G$ under $*$ .                              | [1] |
| c. | For $x \in G$ find an expression for $x^{-1}$ (the inverse of $x$ under *). | [1] |
| d. | Show that the binary operation $*$ is commutative on $G$ .                  | [2] |
| e. | e. Show that the binary operation $*$ is associative on $G$ .               |     |
| f. | (i) If $x, y \in G$ explain why $(c-x)(c-y) > 0$ .                          | [2] |
|    | (ii) Hence show that $x + y < c + \frac{xy}{c}$ .                           |     |
| g. | Show that <i>G</i> is closed under *.                                       | [2] |
| h. | Explain why $\{G, *\}$ is an Abelian group.                                 | [2] |

a. Below are the graphs of the two functions  $F:P\to Q \text{ and } g:A\to B$  .



Determine, with reference to features of the graphs, whether the functions are injective and/or surjective.

b. Given two functions  $h:X\to Y \text{ and } k:Y\to Z$  .

## Show that

(i) if both h and k are injective then so is the composite function  $k \circ h$ ;

[4]

(ii) if both h and k are surjective then so is the composite function  $k \circ h$ .

Consider the group  $\{G, \times_{18}\}$  defined on the set  $\{1, 5, 7, 11, 13, 17\}$  where  $\times_{18}$  denotes multiplication modulo 18. The group  $\{G, \times_{18}\}$  is shown in the following Cayley table.

| ×18 | 1  | 5  | 7  | 11 | 13 | 17 |
|-----|----|----|----|----|----|----|
| 1   | 1  | 5  | 7  | 11 | 13 | 17 |
| 5   | 5  | 7  | 17 | 1  | 11 | 13 |
| 7   | 7  | 17 | 13 | 5  | 1  | 11 |
| 11  | 11 | 1  | 5  | 13 | 17 | 7  |
| 13  | 13 | 11 | 1  | 17 | 7  | 5  |
| 17  | 17 | 13 | 11 | 7  | 5  | 1  |

The subgroup of  $\{G, \times_{18}\}$  of order two is denoted by  $\{K, \times_{18}\}$ .

| a.i. Find the order of elements 5, 7 and 17 in $\{G, 	imes_{18}\}$ .             |     |  |
|----------------------------------------------------------------------------------|-----|--|
| a.ii.State whether or not $\{G, 	imes_{18}\}$ is cyclic, justifying your answer. | [2] |  |
| b. Write down the elements in set $K$ .                                          | [1] |  |
| c. Find the left cosets of $K$ in $\{G, 	imes_{18}\}$ .                          | [4] |  |

A group  $\{D, \ imes_3\}$  is defined so that  $D=\{1, \ 2\}$  and  $imes_3$  is multiplication modulo 3.

A function  $f:\mathbb{Z} o D$  is defined as  $f:x\mapsto egin{cases} 1,\ x ext{ is even}\ 2,\ x ext{ is odd} \end{cases}.$ 

a. Prove that the function f is a homomorphism from the group  $\{\mathbb{Z}, +\}$  to  $\{D, \times_3\}$ .

- b. Find the kernel of f. [3] c. Prove that  $\{ \operatorname{Ker}(f), + \}$  is a subgroup of  $\{ \mathbb{Z}, + \}$ . [4]
  - a. Associativity and commutativity are two of the five conditions for a set S with the binary operation \* to be an Abelian group; state the other [2] three conditions.
  - b. The Cayley table for the binary operation  $\odot$  defined on the set  $T = \{p, q, r, s, t\}$  is given below.

[6]

| O | ) | p | q | r | s | t |
|---|---|---|---|---|---|---|
| p |   | s | r | t | p | q |
| q |   | t | s | р | q | r |
| r |   | q | t | s | r | p |
| s |   | р | q | r | s | t |
| t |   | r | p | q | t | s |

(i) Show that exactly three of the conditions for  $\{T, \odot\}$  to be an Abelian group are satisfied, but that neither associativity nor commutativity are satisfied.

(ii) Find the proper subsets of *T* that are groups of order 2, and comment on your result in the context of Lagrange's theorem.

(iii) Find the solutions of the equation  $(p \odot x) \odot x = x \odot p$ .

The binary operation \* is defined by

a\*b=a+b-3 for  $a,\ b\in\mathbb{Z}.$ 

The binary operation  $\circ$  is defined by

 $a \circ b = a + b + 3$  for  $a, b \in \mathbb{Z}$ .

Consider the group  $\{\mathbb{Z}, \circ\}$  and the bijection  $f: \mathbb{Z} \to \mathbb{Z}$  given by f(a) = a - 6.

| a. | Show that $\{\mathbb{Z}, *\}$ is an Abelian group.                                   | [9] |
|----|--------------------------------------------------------------------------------------|-----|
| b. | Show that there is no element of order 2.                                            | [2] |
| c. | Find a proper subgroup of $\{\mathbb{Z}, *\}$ .                                      | [2] |
| d. | Show that the groups $\{\mathbb{Z}, *\}$ and $\{\mathbb{Z}, \circ\}$ are isomorphic. | [3] |

The set S is defined as the set of real numbers greater than 1.

The binary operation \* is defined on S by x \* y = (x - 1)(y - 1) + 1 for all  $x, y \in S$ .

Let 
$$a \in S$$
.

| a. Show that $x * y \in S$ for all $x, \ y \in S.$              | [2] |
|-----------------------------------------------------------------|-----|
| b.i. Show that the operation $*$ on the set $S$ is commutative. | [2] |
| b.iiShow that the operation $*$ on the set $S$ is associative.  | [5] |
| c. Show that 2 is the identity element.                         | [2] |
| d. Show that each element $a\in S$ has an inverse.              | [3] |

The elements of sets P and Q are taken from the universal set  $\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ .  $P = \{1, 2, 3\}$  and  $Q = \{2, 4, 6, 8, 10\}$ .

- a. Given that  $R = (P \cap Q')'$ , list the elements of R.
- b. For a set S, let S\* denote the set of all subsets of S,
  - (i) find  $P^*$ ;
  - (ii) find  $n(R^*)$ .

The relation R is defined such that aRb if and only if  $4^a - 4^b$  is divisible by 7, where  $a, b \in \mathbb{Z}^+$ .

The equivalence relation S is defined such that cSd if and only if  $4^c - 4^d$  is divisible by 6, where  $c, d \in \mathbb{Z}^+$ .

| a.i. Show that $R$ is an equivalence relation.          | [6] |
|---------------------------------------------------------|-----|
| a.ii.Determine the equivalence classes of $R$ .         | [3] |
| b. Determine the number of equivalence classes of $S$ . | [2] |

An Abelian group,  $\{G, *\}$ , has 12 different elements which are of the form  $a^i * b^j$  where  $i \in \{1, 2, 3, 4\}$  and  $j \in \{1, 2, 3\}$ . The elements a and b satisfy  $a^4 = e$  and  $b^3 = e$  where e is the identity.

Let  $\{H, *\}$  be the proper subgroup of  $\{G, *\}$  having the maximum possible order.

| a. | Stat | te the possible orders of an element of $\{G, \ *\}$ and for each order give an example of an element of that order. | [8] |
|----|------|----------------------------------------------------------------------------------------------------------------------|-----|
| b. | (i)  | State a generator for $\{H, *\}$ .                                                                                   | [7] |
|    | (ii) | Write down the elements of $\{H, \ *\}$ .                                                                            |     |

(iii) Write down the elements of the coset of H containing a.

The relation R is defined such that xRy if and only if |x|+|y|=|x+y| for  $x, y, y \in \mathbb{R}$ .

[2]

b. Show, by means of an example, that R is not transitive.

The group G has a unique element, h, of order 2.

- (i) Show that  $ghg^{-1}$  has order 2 for all  $g \in G$ .
- (ii) Deduce that gh = hg for all  $g \in G$ .

Two functions, F and G , are defined on  $A = \mathbb{R} \setminus \{0, 1\}$  by

$$F(x)=rac{1}{x},\ G(x)=1-x, ext{ for all } x\in A.$$

(a) Show that under the operation of composition of functions each function is its own inverse.

(b) *F* and *G* together with four other functions form a closed set under the operation of composition of functions.Find these four functions.

The binary operation st is defined for  $x,\ y\in S=\{0,\ 1,\ 2,\ 3,\ 4,\ 5,\ 6\}$  by

$$x*y=(x^3y-xy) mod 7$$

| a. | Find | the element $e$ such that $e * y = y$ , for all $y \in S.$ | [2] |
|----|------|------------------------------------------------------------|-----|
| b. | (i)  | Find the least solution of $x * x = e$ .                   | [5] |
|    | (ii) | Deduce that $(S, *)$ is not a group.                       |     |
| c. | Dete | rmine whether or not $e$ is an identity element.           | [3] |

All of the relations in this question are defined on  $\mathbb{Z} \setminus \{0\}$ .

- (i) reflexive;
- (ii) symmetric;
- (iii) transitive.

b. Decide, giving a proof or a counter-example, whether  $xRy \Leftrightarrow -2 < x - y < 2$  is

- (i) reflexive;
- (ii) symmetric;

[4]

[4]

- (iii) transitive.
- c. Decide, giving a proof or a counter-example, whether  $xRy \Leftrightarrow xy > 0$  is
  - (i) reflexive;
  - (ii) symmetric;
  - (iii) transitive.

d. Decide, giving a proof or a counter-example, whether  $xRy \Leftrightarrow rac{x}{y} \in \mathbb{Z}$  is

- (i) reflexive;
- (ii) symmetric;
- (iii) transitive.
- e. One of the relations from parts (a), (b), (c) and (d) is an equivalence relation.

For this relation, state what the equivalence classes are.

Let  $A = \{a, b\}$ .

Let the set of all these subsets be denoted by P(A). The binary operation symmetric difference,  $\Delta$ , is defined on P(A) by  $X\Delta Y = (X \setminus Y) \cup (Y \setminus X)$  where  $X, Y \in P(A)$ .

Let  $\mathbb{Z}_4 = \{0, 1, 2, 3\}$  and  $+_4$  denote addition modulo 4.

Let S be any non-empty set. Let P(S) be the set of all subsets of S. For the following parts, you are allowed to assume that  $\Delta$ ,  $\cup$  and  $\cap$  are associative.

| a. | Write down all four subsets of $A$ .                                                              | [1] |
|----|---------------------------------------------------------------------------------------------------|-----|
| b. | Construct the Cayley table for $P(A)$ under $\Delta$ .                                            | [3] |
| c. | Prove that $\{P(A), \Delta\}$ is a group. You are allowed to assume that $\Delta$ is associative. | [3] |
| d. | Is $\{P(A), \Delta\}$ isomorphic to $\{\mathbb{Z}_4, +_4\}$ ? Justify your answer.                | [2] |
| e. | (i) State the identity element for $\{P(S), \Delta\}$ .                                           | [4] |
|    | (ii) Write down $X^{-1}$ for $X \in P(S)$ .                                                       |     |
|    | (iii) Hence prove that $\{P(S), \Delta\}$ is a group.                                             |     |
| f. | Explain why $\{P(S), \cup\}$ is not a group.                                                      | [1] |
| g. | Explain why $\{P(S), \cap\}$ is not a group.                                                      | [1] |
|    |                                                                                                   |     |

The binary operation \* is defined on the set  $T = \{0, 2, 3, 4, 5, 6\}$  by  $a * b = (a + b - ab) \pmod{7}, a, b \in T$ .

[4]

[4]

[3]

| ж | 0 | 2 | 3 | 4 | 5 | 6 |
|---|---|---|---|---|---|---|
| 0 | 0 | 2 | 3 | 4 | 5 | 6 |
| 2 | 2 | 0 | 6 | 5 | 4 | 3 |
| 3 | 3 | 6 |   |   |   |   |
| 4 | 4 | 5 |   |   |   |   |
| 5 | 5 | 4 |   |   |   |   |
| 6 | 6 | 3 |   |   |   |   |

b. Prove that  $\{T, *\}$  forms an Abelian group.

c. Find the order of each element in T.

d. Given that  $\{H, *\}$  is the subgroup of  $\{T, *\}$  of order 2, partition T into the left cosets with respect to H.

The function  $f:\mathbb{R} imes\mathbb{R} o\mathbb{R} imes\mathbb{R}$  is defined by  $f(x,\ y)=(2x^3+y^3,\ x^3+2y^3).$ 

- a. Show that f is a bijection.
- b. Hence write down the inverse function  $f^{-1}(x, y)$ .

Let A be the set  $\{x|x\in\mathbb{R},\ x
eq 0\}$ . Let B be the set  $\{x|x\in]-1,\ +1[,\ x
eq 0\}$ .

A function f:A
ightarrow B is defined by  $f(x)=rac{2}{\pi} {
m arctan}(x).$ 

Let D be the set  $\{x|x\in\mathbb{R},\ x>0\}.$ 

A function  $g:\mathbb{R} o D$  is defined by  $g(x)=\mathrm{e}^x.$ 

a. (i) Sketch the graph of y = f(x) and hence justify whether or not f is a bijection.

- (ii) Show that  $\boldsymbol{A}$  is a group under the binary operation of multiplication.
- (iii) Give a reason why B is not a group under the binary operation of multiplication.
- (iv) Find an example to show that f(a imes b) = f(a) imes f(b) is not satisfied for all  $a, \ b \in A.$
- b. (i) Sketch the graph of y = g(x) and hence justify whether or not g is a bijection.

(ii) Show that g(a+b)=g(a) imes g(b) for all  $a,\ b\in \mathbb{R}.$ 

(iii) Given that  $\{\mathbb{R}, +\}$  and  $\{D, \times\}$  are both groups, explain whether or not they are isomorphic.

[7]

[4]

[3]

[12]

[1]

[13]

[8]

- (a) Show that  $f : \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}$  defined by f(x, y) = (2x + y, x y) is a bijection.
- (b) Find the inverse of f.

The binary operation \* is defined on  $\mathbb{R}$  as follows. For any elements  $a, b \in \mathbb{R}$ 

$$a \ast b = a + b + 1$$

- a. (i) Show that \* is commutative.
  - (ii) Find the identity element.
  - (iii) Find the inverse of the element *a*.

b. The binary operation  $\cdot$  is defined on  $\mathbb{R}$  as follows. For any elements a ,  $b \in \mathbb{R}$ 

 $a \cdot b = 3ab$ . The set *S* is the set of all ordered pairs (x, y) of real numbers and the binary operation  $\odot$  is defined on the set *S* as  $(x_1, y_1) \odot (x_2, y_2) = (x_1 * x_2, y_1 \cdot y_2)$ . Determine whether or not  $\odot$  is associative.

- (a) Draw the Cayley table for the set of integers  $G = \{0, 1, 2, 3, 4, 5\}$  under addition modulo 6,  $+_6$ .
- (b) Show that  $\{G, +_6\}$  is a group.
- (c) Find the order of each element.
- (d) Show that  $\{G, +_6\}$  is cyclic and state its generators.
- (e) Find a subgroup with three elements.
- (f) Find the other proper subgroups of  $\{G, +_6\}$ .

The function  $f:[0, \infty[ 
ightarrow [0, \infty[$  is defined by  $f(x)=2\mathrm{e}^x+\mathrm{e}^{-x}-3$  .

- (a) Find f'(x).
- (b) Show that f is a bijection.
- (c) Find an expression for  $f^{-1}(x)$ .

The universal set contains all the positive integers less than 30. The set A contains all prime numbers less than 30 and the set B contains all positive integers of the form 3 + 5n ( $n \in \mathbb{N}$ ) that are less than 30. Determine the elements of

a.  $A \setminus B$ ;

b.  $A\Delta B$  .

[5]

[6]

The binary operation \* is defined on  $\mathbb{N}$  by a \* b = 1 + ab.

Determine whether or not \*

a. is closed;[2]b. is commutative;[2]c. is associative;[3]d. has an identity element.[3]

A group with the binary operation of multiplication modulo 15 is shown in the following Cayley table.

| $\times_{15}$ | 1  | 2  | 4  | 7  | 8  | 11 | 13 | 14 |
|---------------|----|----|----|----|----|----|----|----|
| 1             | 1  | 2  | 4  | 7  | 8  | 11 | 13 | 14 |
| 2             | 2  | 4  | 8  | 14 | 1  | 7  | 11 | 13 |
| 4             | 4  | 8  | 1  | 13 | 2  | 14 | 7  | 11 |
| 7             | 7  | 14 | 13 | 4  | 11 | 2  | 1  | 8  |
| 8             | 8  | 1  | 2  | 11 | 4  | 13 | 14 | 7  |
| 11            | 11 | 7  | 14 | 2  | 13 | а  | Ь  | с  |
| 13            | 13 | 11 | 7  | 1  | 14 | d  | е  | f  |
| 14            | 14 | 13 | 11 | 8  | 7  | g  | h  | i  |

| a. | Find the values represented by each of the letters in the table. | [3] |
|----|------------------------------------------------------------------|-----|
| b. | Find the order of each of the elements of the group.             | [3] |
| c. | Write down the three sets that form subgroups of order 2.        | [2] |
| d. | Find the three sets that form subgroups of order 4.              | [4] |
|    |                                                                  |     |

| a. | Give  | en that $p$ , $q$ and $r$ are elements of a group, prove the left-cancellation rule, <i>i.e.</i> $pq = pr \Rightarrow q = r$ .       | [4]  |
|----|-------|--------------------------------------------------------------------------------------------------------------------------------------|------|
|    | You   | r solution should indicate which group axiom is used at each stage of the proof.                                                     |      |
| b. | Cons  | sider the group $G$ , of order 4, which has distinct elements $a$ , $b$ and $c$ and the identity element $e$ .                       | [10] |
|    | (i)   | Giving a reason in each case, explain why <i>ab</i> cannot equal <i>a</i> or <i>b</i> .                                              |      |
|    | (ii)  | Given that $c$ is self inverse, determine the two possible Cayley tables for $G$ .                                                   |      |
|    | (iii) | Determine which one of the groups defined by your two Cayley tables is isomorphic to the group defined by the set $\{1, -1, i, -i\}$ |      |
|    | unde  | er multiplication of complex numbers. Your solution should include a correspondence between $a, b, c, e$ and $1, -1, i, -i$ .        |      |

A binary operation is defined on  $\{-1, 0, 1\}$  by

$$A \odot B = \left\{egin{array}{ccc} -1, & ext{if} \; |A| < |B| \ 0, & ext{if} \; |A| = |B| \ 1, & ext{if} \; |A| > |B| \,. \end{array}
ight.$$

- (a) Construct the Cayley table for this operation.
- (b) Giving reasons, determine whether the operation is
- (i) closed;
- (ii) commutative;
- (iii) associative.

Sets X and Y are defined by  $X = [0, 1[; Y = \{0, 1, 2, 3, 4, 5\}.$ 

a. (i) Sketch the set  $X \times Y$  in the Cartesian plane. [5] Sketch the set  $Y \times X$  in the Cartesian plane. (ii) State  $(X \times Y) \cap (Y \times X)$ . (iii) b. Consider the function  $f: X \times Y \to \mathbb{R}$  defined by f(x, y) = x + y and the function  $g: X \times Y \to \mathbb{R}$  defined by g(x, y) = xy. [10] Find the range of the function *f*. (i) (ii) Find the range of the function g. Show that f is an injection. (iii) Find  $f^{-1}(\pi)$ , expressing your answer in exact form. (iv) Find all solutions to  $g(x, y) = \frac{1}{2}$ . (v) Let  $f: G \to H$  be a homomorphism of finite groups.

| a. | Prov | the that $f(e_G) = e_H$ , where $e_G$ is the identity element in G and $e_H$ is the identity | [2] |
|----|------|----------------------------------------------------------------------------------------------|-----|
|    | elem | ent in H.                                                                                    |     |
| b. | (i)  | Prove that the kernel of $f,\;K={ m Ker}(f)$ , is closed under the group operation.          | [6] |
|    | (ii) | Deduce that $K$ is a subgroup of $G$ .                                                       |     |
| c. | (i)  | Prove that $gkg^{-1} \in K$ for all $g \in G, \ k \in K$ .                                   | [6] |

(ii) Deduce that each left coset of K in G is also a right coset.

Let X and Y be sets. The functions  $f: X \to Y$  and  $g: Y \to X$  are such that  $g \circ f$  is the identity function on X.

- a. Prove that:
  - (i) f is an injection,
  - (ii) g is a surjection.

b. Given that  $X = \mathbb{R}^+ \cup \{0\}$  and  $Y = \mathbb{R}$ , choose a suitable pair of functions f and g to show that g is not necessarily a bijection. [3]

Let (H, \*) be a subgroup of the group (G, \*).

Consider the relation R defined in G by xRy if and only if  $y^{-1} * x \in H$ .

- (a) Show that R is an equivalence relation on G.
- (b) Determine the equivalence class containing the identity element.

Consider the set A consisting of all the permutations of the integers 1, 2, 3, 4, 5.

| a. | Two members of $A$ are given by $p=(1\ 2\ 5)$ and $q=(1\ 3)(2\ 5).$               | [4] |
|----|-----------------------------------------------------------------------------------|-----|
|    | Find the single permutation which is equivalent to $q\circ p.$                    |     |
| b. | State a permutation belonging to $A$ of order                                     | [3] |
|    | (i) 4;                                                                            |     |
|    | (ii) 6.                                                                           |     |
| c. | Let $P = \{$ all permutations in $A$ where exactly two integers change position}, | [4] |
|    | and $Q=$ {all permutations in $A$ where the integer 1 changes position}.          |     |
|    | (i) List all the elements in $P\cap Q.$                                           |     |
|    | (ii) Find $n(P\cap Q').$                                                          |     |

Given the sets A and B, use the properties of sets to prove that  $A \cup (B' \cup A)' = A \cup B$ , justifying each step of the proof.

(a) Write down why the table below is a Latin square.

|   | d        | e | b | a | c |
|---|----------|---|---|---|---|
| d | $\int c$ | d | e | b | a |
| e | d        | e | b | a | c |
| b | a        | b | d | c | e |
| a | b        | a | c | e | d |
| c | L e      | c | a | d | b |

(b) Use Lagrange's theorem to show that the table is not a group table.

Let  $p = 2^k + 1$ ,  $k \in \mathbb{Z}^+$  be a prime number and let *G* be the group of integers 1, 2, ..., p - 1 under multiplication defined modulo *p*. By first considering the elements  $2^1$ ,  $2^2$ , ...,  $2^k$  and then the elements  $2^{k+1}$ ,  $2^{k+2}$ , ..., show that the order of the element 2 is 2k. Deduce that  $k = 2^n$  for  $n \in \mathbb{N}$ .

Prove that  $(A \cap B) \setminus (A \cap C) = A \cap (B \setminus C)$  where A, B and C are three subsets of the universal set U.

Let  $\{G, *\}$  be a finite group and let H be a non-empty subset of G. Prove that  $\{H, *\}$  is a group if H is closed under \*.

The group  $\{G, *\}$  has identity  $e_G$  and the group  $\{H, \circ\}$  has identity  $e_H$ . A homomorphism f is such that  $f: G \to H$ . It is given that  $f(e_G) = e_H$ .

| a. Prove that for all $a\in G,\;f(a^{-1})=\left(f(a) ight)^{-1}.$ | [4] |
|-------------------------------------------------------------------|-----|
|-------------------------------------------------------------------|-----|

[4]

[4]

b. Let  $\{H, \circ\}$  be the cyclic group of order seven, and let p be a generator.

Let  $x\in G$  such that  $f(x)=p^2.$ Find  $f(x^{-1}).$ 

c. Given that f(x \* y) = p, find f(y).

*H* and *K* are subgroups of a group *G*. By considering the four group axioms, prove that  $H \cap K$  is also a subgroup of *G*.

Prove that set difference is not associative.

Define  $f: \mathbb{R} \setminus \{0.5\} o \mathbb{R}$  by  $f(x) = rac{4x+1}{2x-1}$ .

- a. Prove that f is an injection.
- b. Prove that f is not a surjection.

Consider the sets

$$G = \left\{ rac{n}{6^i} | n \in \mathbb{Z}, \ i \in \mathbb{N} 
ight\}, \ H = \left\{ rac{m}{3^j} | m \in \mathbb{Z}, \ j \in \mathbb{N} 
ight\}.$$

a. Show that  $(G,\,+)$  forms a group where + denotes addition on  $\mathbb Q.$  Associativity may be assumed.

- b. Assuming that (H, +) forms a group, show that it is a proper subgroup of (G, +).
- c. The mapping  $\phi:G
  ightarrow G$  is given by  $\phi(g)=g+g,$  for  $g\in G.$

Prove that  $\phi$  is an isomorphism.

Consider the following functions

 $f: \left]1, 
ight. + \infty 
ight[ 
ightarrow \mathbb{R}^+ ext{ where } f(x) = (x-1)(x+2)$ 

- $g:\mathbb{R} imes\mathbb{R} o\mathbb{R} imes\mathbb{R}$  where  $g(x,\ y)=(\sin(x+y),\ x+y)$
- $h:\mathbb{R} imes\mathbb{R} o\mathbb{R} imes\mathbb{R}$  where  $h(x,\ y)=(x+3y,\ 2x+y)$
- (a) Show that f is bijective.
- (b) Determine, with reasons, whether
- (i) g is injective;
- (ii) g is surjective.
- (c) Find an expression for  $h^{-1}(x, y)$  and hence justify that h has an inverse function.

a. Let  $f: \mathbb{Z} \times \mathbb{R} \to \mathbb{R}$ ,  $f(m, x) = (-1)^m x$ . Determine whether f is

- (i) surjective;
- (ii) injective.

b. *P* is the set of all polynomials such that 
$$P = \left\{ \sum_{i=0}^{n} a_i x^i | n \in \mathbb{N} \right\}$$
.

Let  $g: P \to P, g(p) = xp$ . Determine whether g is

- (i) surjective;
- (ii) injective.

c. Let 
$$h:\mathbb{Z} o\mathbb{Z}^+,$$
  $h(x)=egin{cases} 2x, & x>0\ 1-2x, & x\leqslant 0 \end{bmatrix}$ . Determine whether  $h$  is

[7]

[4]

[4]

[4] [4]

[5]

[4]

[7]

- (i) surjective;
- (ii) injective.

The function  $f:\mathbb{R} o\mathbb{R}$  is defined as  $f:x o egin{cases} 1,\ x\geq 0\ -1,\ x<0 \end{cases}$  .

- a. Prove that f is
  - (i) not injective;
  - (ii) not surjective.
- b. The relation R is defined for  $a, \ b\in \mathbb{R}$  so that aRb if and only if f(a) imes f(b)=1.Show that R is an equivalence relation.
- c. The relation R is defined for  $a, \ b \in \mathbb{R}$  so that aRb if and only if f(a) imes f(b) = 1.

```
State the equivalence classes of R.
```

The function 
$$f: \mathbb{R}^+ imes \mathbb{R}^+ o \mathbb{R}^+ imes \mathbb{R}^+$$
 is defined by  $f(x, y) = \left(xy^2, rac{x}{y}
ight).$ 

Show that *f* is a bijection.

Let G be a finite cyclic group.

- (a) Prove that *G* is Abelian.
- (b) Given that a is a generator of G, show that  $a^{-1}$  is also a generator.
- (c) Show that if the order of G is five, then all elements of G, apart from the identity, are generators of G.

The function  $f:\mathbb{R}
ightarrow\mathbb{R}$  is defined by

$$f(x) = 2\mathrm{e}^x - \mathrm{e}^{-x}.$$

- (a) Show that f is a bijection.
- (b) Find an expression for  $f^{-1}(x)$ .

[4]

[8]

[2]

[2]

[5]

[10]

a. Determine the order of  $S_4$ .

b. Find the proper subgroup H of order 6 containing  $p_1$ ,  $p_2$  and their compositions. Express each element of H in cycle form.

c. Let  $f: S_4 o S_4$  be defined by  $f(p) = p \circ p$  for  $p \in S_4$ . [5]

Using  $p_1$  and  $p_2$ , explain why f is not a homomorphism.

a. The relation aRb is defined on  $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$  if and only if ab is the square of a positive integer.

- (i) Show that *R* is an equivalence relation.
- (ii) Find the equivalence classes of *R* that contain more than one element.

b. Given the group (G, \*), a subgroup (H, \*) and  $a, b \in G$ , we define  $a \sim b$  if and only if  $ab^{-1} \in H$ . Show that  $\sim$  is an equivalence relation. [9]

Set  $S = \{x_0, x_1, x_2, x_3, x_4, x_5\}$  and a binary operation  $\circ$  on S is defined as  $x_i \circ x_j = x_k$ , where  $i + j \equiv k \pmod{6}$ .

- (a) (i) Construct the Cayley table for  $\{S, \circ\}$  and hence show that it is a group.
  - (ii) Show that  $\{S, \circ\}$  is cyclic.
- (b) Let  $\{G, *\}$  be an Abelian group of order 6. The element  $a \in G$  has order 2 and the element  $b \in G$  has order 3.
  - (i) Write down the six elements of  $\{G, *\}$ .
  - (ii) Find the order of a \* b and hence show that  $\{G, *\}$  is isomorphic to  $\{S, \circ\}$ .

The function f is defined by

$$f(x)=rac{1-\mathrm{e}^{-x}}{1+\mathrm{e}^{-x}},\ x\in\mathbb{R}\ .$$

- (a) Find the range of f.
- (b) Prove that f is an injection.
- (c) Taking the codomain of f to be equal to the range of f, find an expression for  $f^{-1}(x)$ .

The relation *R* is defined on  $\mathbb{Z} \times \mathbb{Z}$  such that (a, b)R(c, d) if and only if a - c is divisible by 3 and b - d is divisible by 2.

- (a) Prove that *R* is an equivalence relation.
- (b) Find the equivalence class for (2, 1).
- (c) Write down the five remaining equivalence classes.

The binary operation \* is defined on the set  $S = \{0, 1, 2, 3\}$  by

$$a*b=a+2b+ab(mod 4)$$
 .

- (a) (i) Construct the Cayley table.
  - (ii) Write down, with a reason, whether or not your table is a Latin square.
- (b) (i) Write down, with a reason, whether or not \* is commutative.
  - (ii) Determine whether or not \* is associative, justifying your answer.
- (c) Find all solutions to the equation x\*1=2\*x , for  $x\in S$  .
- (a) Find the six roots of the equation  $z^6 1 = 0$ , giving your answers in the form  $r \operatorname{cis} \theta, r \in \mathbb{R}^+, 0 \leq \theta < 2\pi$ .
- (b) (i) Show that these six roots form a group G under multiplication of complex numbers.
  - (ii) Show that G is cyclic and find all the generators.
  - (iii) Give an example of another group that is isomorphic to G, stating clearly the corresponding elements in the two groups.
- a. The relation *R* is defined on  $\mathbb{Z}^+$  by *aRb* if and only if *ab* is even. Show that only one of the conditions for *R* to be an equivalence relation is [5] satisfied.
- b. The relation S is defined on  $\mathbb{Z}^+$  by *aSb* if and only if  $a^2 \equiv b^2 \pmod{6}$ .
  - (i) Show that *S* is an equivalence relation.
  - (ii) For each equivalence class, give the four smallest members.

The groups  $\{K, *\}$  and  $\{H, \odot\}$  are defined by the following Cayley tables.

| * | E | A | В | С |
|---|---|---|---|---|
| E | E | A | В | С |
| A | A | E | С | В |
| В | В | С | A | Ε |
| С | С | В | Ε | A |

|   | $\odot$ | е | a |
|---|---------|---|---|
| Н | е       | е | а |
|   | a       | а | е |

G

By considering a suitable function from G to H, show that a surjective homomorphism exists between these two groups. State the kernel of this homomorphism.

[9]

$$f_1(m,\ n)=m-n+4; \ \ f_2(m,\ n)=|m|\,; \ \ f_3(m,\ n)=m^2-n^2,$$

Two functions mapping  $\mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$  are defined by

$$g_1(k)=(2k,\ k);\ \ g_2(k)=(k,\ |k|)$$

- (a) Find the range of
- (i)  $f_1 \circ g_1$ ;
- (ii)  $f_3\circ g_2$  .
- (b) Find all the solutions of  $f_1 \circ g_2(k) = f_2 \circ g_1(k)$ .
- (c) Find all the solutions of  $f_3(m, n) = p$  in each of the cases p = 1 and p = 2.

 $\{G, *\}$  is a group with identity element e. Let  $a, b \in G$ .

- a. State Lagrange's theorem.
- b. Verify that the inverse of  $a * b^{-1}$  is equal to  $b * a^{-1}$ .

c. Let  $\{H, *\}$  be a subgroup of  $\{G, *\}$ . Let R be a relation defined on G by

 $aRb \Leftrightarrow a * b^{-1} \in H.$ 

[2]

[3]

[8]

[3]

[3]

Prove that R is an equivalence relation, indicating clearly whenever you are using one of the four properties required of a group.

d. Let  $\{H, *\}$  be a subgroup of  $\{G, *\}$  .Let R be a relation defined on G by

$$aRb \Leftrightarrow a * b^{-1} \in H$$

Show that  $aRb \Leftrightarrow a \in Hb$ , where Hb is the right coset of H containing b.

e. Let  $\{H, *\}$  be a subgroup of  $\{G, *\}$  .Let R be a relation defined on G by

$$aRb \Leftrightarrow a * b^{-1} \in H$$

It is given that the number of elements in any right coset of H is equal to the order of H.

Explain how this fact together with parts (c) and (d) prove Lagrange's theorem.

(a) Given a set U, and two of its subsets A and B, prove that

 $(A ackslash B) \cup (B ackslash A) = (A \cup B) ackslash (A \cap B), ext{ where } A ackslash B = A \cap B'.$ 

(b) Let  $S = \{A, B, C, D\}$  where  $A = \emptyset$ ,  $B = \{0\}$ ,  $C = \{0, 1\}$  and  $D = \{0, 1, 2\}$ . State, with reasons, whether or not each of the following statements is true.

- (i) The operation  $\setminus$  is closed in S.
- (ii) The operation  $\cap$  has an identity element in S but not all elements have an inverse.
- (iii) Given  $Y \in S$ , the equation  $X \cup Y = Y$  always has a unique solution for X in S.

The relation R is defined on  $\mathbb Z$  by xRy if and only if  $x^2y\equiv y \bmod 6.$ 

| a. | Show that the product of three consecutive integers is divisible by 6. | [2] |
|----|------------------------------------------------------------------------|-----|
| b. | Hence prove that $R$ is reflexive.                                     | [3] |
| c. | Find the set of all $y$ for which $5Ry$ .                              | [3] |
| d. | Find the set of all $y$ for which $3Ry$ .                              | [2] |
| e. | Using your answers for (c) and (d) show that $R$ is not symmetric.     | [2] |

Determine, giving reasons, which of the following sets form groups under the operations given below. Where appropriate you may assume that multiplication is associative.

- (a)  $\mathbb{Z}$  under subtraction.
- (b) The set of complex numbers of modulus 1 under multiplication.
- (c) The set  $\{1, 2, 4, 6, 8\}$  under multiplication modulo 10.
- (d) The set of rational numbers of the form

$$rac{3m+1}{3n+1}, ext{ where } m, \ n \in \mathbb{Z}$$

under multiplication.

Consider the set S defined by  $S = \{s \in \mathbb{Q} : 2s \in \mathbb{Z}\}.$ 

You may assume that + (addition) and  $\times$  (multiplication) are associative binary operations on  $\mathbb{Q}.$ 

- a. (i) Write down the six smallest non-negative elements of S.
  - (ii) Show that  $\{S, +\}$  is a group.
  - (iii) Give a reason why  $\{S,\,\,\times\}$  is not a group. Justify your answer.
- b. The relation R is defined on S by  $s_1Rs_2$  if  $3s_1 + 5s_2 \in \mathbb{Z}$ .
  - (i) Show that R is an equivalence relation.
  - (ii) Determine the equivalence classes.

[9]

[10]

The binary operation  $\Delta$  is defined on the set  $S = \{1, 2, 3, 4, 5\}$  by the following Cayley table.

| Δ | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|
| 1 | 1 | 1 | 2 | 3 | 4 |
| 2 | 1 | 2 | 1 | 2 | 3 |
| 3 | 2 | 1 | 3 | 1 | 2 |
| 4 | 3 | 2 | 1 | 4 | 1 |
| 5 | 4 | 3 | 2 | 1 | 5 |

- (a) State whether S is closed under the operation  $\Delta$  and justify your answer.
- (b) State whether  $\Delta$  is commutative and justify your answer.
- (c) State whether there is an identity element and justify your answer.
- (d) Determine whether  $\Delta$  is associative and justify your answer.
- (e) Find the solutions of the equation  $a\Delta b = 4\Delta b$ , for  $a \neq 4$ .

The binary operation st is defined for  $a,b\in\mathbb{Z}^+$  by

$$a \ast b = a + b - 2.$$

- (a) Determine whether or not \* is
- (i) closed,
- (ii) commutative,
- (iii) associative.
- (b) (i) Find the identity element.
- (ii) Find the set of positive integers having an inverse under \*.

A, B, C and D are subsets of  $\mathbb{Z}$ .

 $egin{aligned} A &= \{\,m|\,m\, ext{is a prime number less than 15}\}\ B &= \{\,m|\,m^4 = 8m\}\ C &= \{\,m|\,(m+1)(m-2) < 0\}\ D &= \{\,m|\,m^2 < 2m + 4\} \end{aligned}$ 

- (a) List the elements of each of these sets.
- (b) Determine, giving reasons, which of the following statements are true and which are false.
  - (i)  $n(D) = n(B) + n(B \cup C)$
  - (ii)  $D \setminus B \subset A$
  - (iii)  $B \cap A' = \emptyset$
  - (iv)  $n(B\Delta C) = 2$

- (a) Consider the set  $A = \{1, 3, 5, 7\}$  under the binary operation \*, where \* denotes multiplication modulo 8.
  - (i) Write down the Cayley table for  $\{A, *\}$ .
  - (ii) Show that  $\{A, *\}$  is a group.
  - (iii) Find all solutions to the equation 3 \* x \* 7 = y. Give your answers in the form (x, y).
- (b) Now consider the set  $B = \{1, 3, 5, 7, 9\}$  under the binary operation  $\otimes$ , where  $\otimes$  denotes multiplication modulo 10. Show that  $\{B, \otimes\}$  is not a group.
- (c) Another set C can be formed by removing an element from B so that  $\{C, \otimes\}$  is a group.
  - (i) State which element has to be removed.
  - (ii) Determine whether or not  $\{A, *\}$  and  $\{C, \otimes\}$  are isomorphic.
- Let  $\{G, *\}$  be a finite group of order *n* and let *H* be a non-empty subset of *G*.
- (a) Show that any element  $h \in H$  has order smaller than or equal to n.
- (b) If H is closed under \*, show that  $\{H, *\}$  is a subgroup of  $\{G, *\}$ .

The group  $\{G, *\}$  is Abelian and the bijection  $f: \ G o G$  is defined by  $f(x) = x^{-1}, \ x \in G.$ 

Show that f is an isomorphism.

The group G has a subgroup H. The relation R is defined on G by xRy if and only if  $xy^{-1} \in H$ , for  $x, y \in G$ .

- a. Show that *R* is an equivalence relation.
- b. The Cayley table for *G* is shown below.

|        | е      | а      | $a^2$  | b      | ab     | $a^2b$ |
|--------|--------|--------|--------|--------|--------|--------|
| е      | е      | а      | $a^2$  | b      | ab     | $a^2b$ |
| а      | а      | $a^2$  | е      | ab     | $a^2b$ | b      |
| $a^2$  | $a^2$  | е      | а      | $a^2b$ | b      | ab     |
| b      | b      | $a^2b$ | ab     | е      | $a^2$  | а      |
| ab     | ab     | b      | $a^2b$ | а      | е      | $a^2$  |
| $a^2b$ | $a^2b$ | ab     | Ь      | $a^2$  | а      | е      |

[8]

[6]

The subgroup H is given as  $H = \{e, a^2b\}$ .

(i) Find the equivalence class with respect to *R* which contains *ab*.

(ii) Another equivalence relation  $\rho$  is defined on G by  $x\rho y$  if and only if  $x^{-1}y \in H$ , for  $x, y \in G$ . Find the equivalence class with respect to  $\rho$  which contains ab.

The relation *R* is defined on  $\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$  by *aRb* if and only if  $a(a + 1) \equiv b(b + 1) \pmod{5}$ .

- a. Show that *R* is an equivalence relation.
- b. Show that the equivalence defining R can be written in the form

$$(a-b)(a+b+1) \equiv 0 \pmod{5}.$$

c. Hence, or otherwise, determine the equivalence classes.

Consider the set  $S_3 = \{ \ p, \ q, \ r, \ s, \ t, \ u \}$  of permutations of the elements of the set  $\{1, \ 2, \ 3\}$ , defined by

| n - | (1)            | <b>2</b> | 3 ) | a – (   | 1 | 2 | $3 \rangle$ | r = 0    | 1   | <b>2</b> | 3  | ) e – [ | 1              | 2 | 3   | t + -1   | (1)            | <b>2</b> | 3  | ) u = l  | 1   | 2 | 3   | )   |
|-----|----------------|----------|-----|---------|---|---|-------------|----------|-----|----------|----|---------|----------------|---|-----|----------|----------------|----------|----|----------|-----|---|-----|-----|
| p - | $\backslash 1$ | <b>2</b> | 3)  | , q = ( | 1 | 3 | 2 /         | ), / _ ( | \ 3 | <b>2</b> | 1, | ), = (  | $\backslash 2$ | 1 | 3 / | ), [ – ( | $\backslash 2$ | 3        | 1, | ), u = ( | \ 3 | 1 | 2 / | ) · |

Let  $\circ$  denote composition of permutations, so  $a \circ b$  means b followed by a. You may assume that  $(S_3, \circ)$  forms a group.

## a. Complete the following Cayley table

| ۰ | p | q | r | 5 | t | u |
|---|---|---|---|---|---|---|
| р |   |   |   |   |   |   |
| q |   |   | t |   |   | s |
| r |   | и |   | t | s | q |
| s |   | t | u |   |   | r |
| t |   | s | q | r |   |   |
| u |   | r | 5 | q |   |   |

## [5 marks]

- b. (i) State the inverse of each element.
  - (ii) Determine the order of each element.
- c. Write down the subgroups containing
  - (i) *r*,
  - (ii) *u*.

[4]

[6]

[2]

$$p_1=egin{pmatrix}1&2&3&4\2&4&1&3\end{pmatrix}$$

- (a) (i) State the inverse of  $p_1$ .
  - (ii) Find the order of  $p_1$ .
- (b) Another permutation  $p_2$  is defined by

$$p_2=egin{pmatrix} 1 & 2 & 3 & 4 \ 3 & 2 & 4 & 1 \end{pmatrix}$$

- (i) Determine whether or not the composition of  $p_1$  and  $p_2$  is commutative.
- (ii) Find the permutation  $p_3$  which satisfies

$$p_1p_3p_2=egin{pmatrix} 1 & 2 & 3 & 4 \ 1 & 2 & 3 & 4 \end{pmatrix}.$$

Let *R* be a relation on the set  $\mathbb{Z}$  such that  $aRb \Leftrightarrow ab \ge 0$ , for  $a, b \in \mathbb{Z}$ .

- (a) Determine whether R is
- (i) reflexive;
- (ii) symmetric;
- (iii) transitive.
- (b) Write down with a reason whether or not R is an equivalence relation.

The relation *R* is defined for *a*,  $b \in \mathbb{Z}^+$  such that *aRb* if and only if  $a^2 - b^2$  is divisible by 5.

| a. Show that <i>R</i> is an equivalence relation. | [6] |
|---------------------------------------------------|-----|
| b. Identify the three equivalence classes.        | [4] |

Let  $a \in G$  such that  $a^6 \neq e$  and  $a^4 \neq e$ .

| a. | (i)    | Prove that $G$ is cyclic and state two of its generators.                                                            | [9] |
|----|--------|----------------------------------------------------------------------------------------------------------------------|-----|
|    | (ii)   | Let H be the subgroup generated by $a^4$ . Construct a Cayley table for H.                                           |     |
| b. | State, | with a reason, whether or not it is necessary that a group is cyclic given that all its proper subgroups are cyclic. | [2] |

(b) Consider  $S = \{e, a, b, a * b\}$  under an associative operation \* where e is the identity element. If a \* a = b \* b = e and a \* b = b \* a, show that

- (i) a \* b \* a = b,
- (ii) a \* b \* a \* b = e.
- (c) (i) Write down the Cayley table for  $H = \{S, *\}$ .
- (ii) Show that H is a group.
- (iii) Show that *H* is an Abelian group.

(d) For the above groups, G and H, show that one is cyclic and write down why the other is not. Write down all the generators of the cyclic group.

(e) Give a reason why G and H are not isomorphic.

The relations R and S are defined on quadratic polynomials P of the form

 $P(z)=z^2+az+b \ , ext{ where } a \ , b\in \mathbb{R} \ , z\in \mathbb{C} \ .$ 

- (a) The relation R is defined by  $P_1RP_2$  if and only if the sum of the two zeros of  $P_1$  is equal to the sum of the two zeros of  $P_2$ .
- (i) Show that *R* is an equivalence relation.
- (ii) Determine the equivalence class containing  $z^2 4z + 5$ .
- (b) The relation S is defined by  $P_1SP_2$  if and only if  $P_1$  and  $P_2$  have at least one zero in common. Determine whether or not S is transitive.

The relation R is defined on ordered pairs by

 $(a,\ b)R(c,\ d) ext{ if and only if } ad = bc ext{ where } a,\ b,\ c,\ d \in \mathbb{R}^+.$ 

- (a) Show that *R* is an equivalence relation.
- (b) Describe, geometrically, the equivalence classes.

Consider the set  $S = \{1, 3, 5, 7, 9, 11, 13\}$  under the binary operation multiplication modulo 14 denoted by  $\times_{14}$ .

a. Copy and complete the following Cayley table for this binary operation.

| $\times_{14}$ | 1  | 3  | 5  | 7 | 9  | 11 | 13 |
|---------------|----|----|----|---|----|----|----|
| 1             | 1  | 3  | 5  | 7 | 9  | 11 | 13 |
| 3             | 3  |    |    |   | 13 | 5  | 11 |
| 5             | 5  |    |    |   | 3  | 13 | 9  |
| 7             | 7  |    |    |   |    |    |    |
| 9             | 9  | 13 | 3  |   |    |    |    |
| 11            | 11 | 5  | 13 |   |    |    |    |
| 13            | 13 | 11 | 9  |   |    |    |    |

b. Give one reason why  $\{S, \times_{14}\}$  is not a group.

| c. | Show that a new set G can be formed by removing one of the elements of S such that $\{G, \times_{14}\}$ is a group. | [5] |
|----|---------------------------------------------------------------------------------------------------------------------|-----|
| d. | Determine the order of each element of $\{G, \times_{14}\}$ .                                                       | [4] |
| e. | Find the proper subgroups of $\{G, \times_{14}\}$ .                                                                 | [2] |

[1]

[4]

[11]

[3]

The binary operator multiplication modulo 14, denoted by \*, is defined on the set  $S = \{2, 4, 6, 8, 10, 12\}$ .

| a. | Copy an | d complete | the follo | owing o | peration table. |
|----|---------|------------|-----------|---------|-----------------|
|    | /       |            |           |         |                 |

| *  | 2 | 4  | 6  | 8  | 10 | 12 |
|----|---|----|----|----|----|----|
| 2  |   |    |    |    |    |    |
| 4  | 8 | 2  | 10 | 4  | 12 | 6  |
| 6  |   |    |    |    |    |    |
| 8  |   |    |    |    |    |    |
| 10 | 6 | 12 | 4  | 10 | 2  | 8  |
| 12 |   |    |    |    |    |    |

b. (i) Show that  $\{S, *\}$  is a group.

- (ii) Find the order of each element of  $\{S, *\}$ .
- (iii) Hence show that  $\{S, *\}$  is cyclic and find all the generators.
- c. The set T is defined by  $\{x * x : x \in S\}$ . Show that  $\{T, *\}$  is a subgroup of  $\{S, *\}$ .

The group  $\{G, *\}$  is defined on the set G with binary operation \*. H is a subset of G defined by  $H = \{x : x \in G, a * x * a^{-1} = x \text{ for all } a \in G\}$ . Prove that  $\{H, *\}$  is a subgroup of  $\{G, *\}$ .

The following Cayley table for the binary operation multiplication modulo 9, denoted by \*, is defined on the set  $S = \{1, 2, 4, 5, 7, 8\}$ .

| * | 1 | 2 | 4 | 5 | 7 | 8 |
|---|---|---|---|---|---|---|
| 1 | 1 | 2 | 4 | 5 | 7 | 8 |
| 2 | 2 | 4 | 8 | 1 | 5 | 7 |
| 4 | 4 | 8 |   |   |   |   |
| 5 | 5 | 1 |   |   |   |   |
| 7 | 7 | 5 |   |   |   |   |
| 8 | 8 | 7 |   |   |   |   |

| a. | Copy and complete the table.                                                  | [3] |
|----|-------------------------------------------------------------------------------|-----|
| b. | Show that $\{S, \ *\}$ is an Abelian group.                                   | [5] |
| c. | Determine the orders of all the elements of $\{S, *\}$ .                      | [3] |
| d. | (i) Find the two proper subgroups of $\{S, *\}$ .                             | [4] |
|    | (ii) Find the coset of each of these subgroups with respect to the element 5. |     |
| e. | Solve the equation $2 * x * 4 * x * 4 = 2$ .                                  | [4] |

The binary operation multiplication modulo 10, denoted by  $x_{10}$ , is defined on the set  $T = \{2, 4, 6, 8\}$  and represented in the following Cayley table.

| ×10 | 2 | 4 | 6 | 8 |
|-----|---|---|---|---|
| 2   | 4 | 8 | 2 | 6 |
| 4   | 8 | 6 | 4 | 2 |
| 6   | 2 | 4 | 6 | 8 |
| 8   | 6 | 2 | 8 | 4 |

[4]

[1]

[3]

[3]

[2]

a. Show that  $\{T, \times_{10}\}$  is a group. (You may assume associativity.)

b. By making reference to the Cayley table, explain why T is Abelian.

c.i. Find the order of each element of  $\{T, \times_{10}\}$ .

c.ii.Hence show that {7,  $\times_{10}$ } is cyclic and write down all its generators.

d. The binary operation multiplication modulo 10, denoted by  $\times_{10}$ , is defined on the set  $V = \{1, 3, 5, 7, 9\}$ .

Show that  $\{V, \times_{10}\}$  is not a group.

a.ii.Verify that  $A \setminus C \neq C \setminus A$ .

b. Let S be a set containing n elements where  $n \in \mathbb{N}$ .

Show that S has  $2^n$  subsets.

a. Consider the following Cayley table for the set  $G = \{1, 3, 5, 7, 9, 11, 13, 15\}$  under the operation  $\times_{16}$ , where  $\times_{16}$  denotes multiplication [7] modulo 16.

| $\times_{16}$ | 1  | 3  | 5  | 7  | 9  | 11 | 13 | 15 |
|---------------|----|----|----|----|----|----|----|----|
| 1             | 1  | 3  | 5  | 7  | 9  | 11 | 13 | 15 |
| 3             | 3  | а  | 15 | 5  | 11 | b  | 7  | с  |
| 5             | 5  | 15 | 9  | 3  | 13 | 7  | 1  | 11 |
| 7             | 7  | d  | 3  | 1  | е  | 13 | f  | 9  |
| 9             | 9  | 11 | 13 | g  | 1  | 3  | 5  | 7  |
| 11            | 11 | h  | 7  | 13 | 3  | 9  | i  | 5  |
| 13            | 13 | 7  | 1  | 11 | 5  | j  | 9  | 3  |
| 15            | 15 | 13 | 11 | 9  | 7  | 5  | 3  | 1  |

(i) Find the values of a, b, c, d, e, f, g, h, i and j.

(ii) Given that ×<sub>16</sub> is associative, show that the set G, together with the operation ×<sub>16</sub>, forms a group.
b. The Cayley table for the set H = {e, a<sub>1</sub>, a<sub>2</sub>, a<sub>3</sub>, b<sub>1</sub>, b<sub>2</sub>, b<sub>3</sub>, b<sub>4</sub>} under the operation \*, is shown below.

| *                     | е                     | <i>a</i> 1            | <i>a</i> <sub>2</sub> | <i>a</i> <sub>3</sub> | $b_1$                 | $b_2$                 | <i>b</i> <sub>3</sub> | $b_4$                 |
|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| е                     | е                     | <i>a</i> <sub>1</sub> | <i>a</i> <sub>2</sub> | <i>a</i> <sub>3</sub> | $b_1$                 | <i>b</i> <sub>2</sub> | <i>b</i> <sub>3</sub> | $b_4$                 |
| $a_1$                 | $a_1$                 | <i>a</i> <sub>2</sub> | <i>a</i> <sub>3</sub> | е                     | $b_4$                 | $b_3$                 | $b_1$                 | $b_2$                 |
| <i>a</i> <sub>2</sub> | <i>a</i> <sub>2</sub> | <i>a</i> <sub>3</sub> | е                     | $a_1$                 | $b_2$                 | $b_1$                 | $b_4$                 | $b_3$                 |
| <i>a</i> <sub>3</sub> | <i>a</i> <sub>3</sub> | е                     | $a_1$                 | <i>a</i> <sub>2</sub> | <i>b</i> <sub>3</sub> | $b_4$                 | <i>b</i> <sub>2</sub> | $b_1$                 |
| $b_1$                 | $b_1$                 | $b_3$                 | <i>b</i> <sub>2</sub> | $b_4$                 | е                     | <i>a</i> <sub>2</sub> | <i>a</i> <sub>1</sub> | <i>a</i> <sub>3</sub> |
| <i>b</i> <sub>2</sub> | $b_2$                 | $b_4$                 | $b_1$                 | $b_3$                 | <i>a</i> <sub>2</sub> | е                     | <i>a</i> <sub>3</sub> | <i>a</i> <sub>1</sub> |
| <i>b</i> <sub>3</sub> | $b_3$                 | $b_2$                 | $b_4$                 | $b_1$                 | <i>a</i> <sub>3</sub> | $a_1$                 | е                     | <i>a</i> <sub>2</sub> |
| $b_4$                 | $b_4$                 | $b_1$                 | $b_3$                 | $b_2$                 | <i>a</i> <sub>1</sub> | <i>a</i> <sub>3</sub> | <i>a</i> <sub>2</sub> | е                     |

(i) Given that \* is associative, show that H together with the operation \* forms a group.

- (ii) Find two subgroups of order 4.
- c. Show that  $\{G, \times_{16}\}$  and  $\{H, *\}$  are not isomorphic.
- d. Show that  $\{H, *\}$  is not cyclic.

[8]

[2]

[3]

| a. | The function $g:\mathbb{Z}	o\mathbb{Z}$ is defined by $g(n)= n -1$ for $n\in\mathbb{Z}$ . Show that $g$ is neither surjective nor injective. | [2] |
|----|----------------------------------------------------------------------------------------------------------------------------------------------|-----|
| b. | The set S is finite. If the function $f: S \to S$ is injective, show that f is surjective.                                                   | [2] |
| c. | Using the set $\mathbb{Z}^+$ as both domain and codomain, give an example of an injective function that is not surjective.                   | [3] |

Consider the functions  $f: A \rightarrow B$  and  $g: B \rightarrow C$ .

| a. | Show that if both f and g are injective, then $g \circ f$ is also injective.                                        | [3] |
|----|---------------------------------------------------------------------------------------------------------------------|-----|
| b. | Show that if both f and g are surjective, then $g \circ f$ is also surjective.                                      | [4] |
| c. | Show, using a single counter example, that both of the converses to the results in part (a) and part (b) are false. | [3] |

The function  $f:\mathbb{R}
ightarrow\mathbb{R}$  is defined by

$$f(x)=egin{cases} 2x+1 & ext{for } x\leqslant 2\ x^2-2x+5 & ext{for } x>2. \end{cases}$$

| a. | (i)          | Sketch the graph of <i>f</i> .                                                                                                                                           | [5] |
|----|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| b. | (ii)<br>Find | By referring to your graph, show that f is a bijection.<br>$f^{-1}(x)$ .                                                                                                 | [8] |
| a. | Dete<br>(i)  | rmine, using Venn diagrams, whether the following statements are true. $A' \cup B' = (A \cup B)'$                                                                        | [6] |
| b. | (ii)<br>Prov | $(A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B)$<br>e, without using a Venn diagram, that $A \setminus B$ and $B \setminus A$ are disjoint sets. | [4] |